
DEIP Technical Report (Phase 2)
Angus McLeod, October 2022

Introduction 1

DEIP Plugin 2
Features and Documentation 2

Providers 2
Sources 3
Events 3
Connections 3
Logs 3

Tests, Linting and CI 4

OmniEvent 4
Provider Gems 5

omnievent-icalendar (RubyGems) 5
omnievent-api (RubyGems) 5
omnievent-eventbrite (RubyGems) 5
omnievent-eventzilla (RubyGems) 5
omnievent-meetup (RubyGems) 5

Tests, Linting and CI 5

Introduction
This report is a summary of the technical work conducted in Phase 2 of the Discourse
Events Integration Plugin (DEIP) project in Next Generation Internet’s (NGI) Data Portability
and Services Incubator (DAPSI) program. This report assumes familiarity with the DEIP
Research Report submitted at the end of Phase 1 of the DEIP Project.

The goals of Phase 2, as specified in Pavilion’s DAPSI Workplan were

3. Developing the prototype into an MVP (4.5 months)
We will develop the specification prototype into an MVP that integrates with existing
Discourse features and plugins to allow it to be used for a variety of real-world use
cases. We will add CalDAV support to allow for easy event export.

Deliverable: A working DEIP MVP

4. Packaging, launching and promoting the Product (1.5 months)

1

https://docs.google.com/document/d/1-oJsXivT_KRBZ-wUQ-TbHdO7Z-qf7z4GeiRiJ014V-E/edit?usp=sharing
https://docs.google.com/document/d/1-oJsXivT_KRBZ-wUQ-TbHdO7Z-qf7z4GeiRiJ014V-E/edit?usp=sharing


We will package the plugin as a product, add a business-level subscription, publish
landing pages and documentation, and promote the product both amongst the
Discourse community and to communities not yet using an open source solution for
event management.

The work unfolded broadly as predicted and the substance of the deliverables were
achieved. The DEIP has been released and is currently being tested in a closed beta
amongst Pavilion’s existing customers and also in an open beta in the Discourse
Community. The OmniEvent framework implementing the standard developed in Phase 1 is
also “pre-released” on rubygems.org (it was “in development” at the end of Phase 1)
following various improvements resulting from the work on the DEIP itself. Finally, Pavilion
will likely be presenting our “Practical Event Model” standard at the CalConnect conference
in Nottingham in November, as a first step to pursuing formal standardisation. All of the main
actors in calendar event standardisation will be at CalConnect.

This report briefly will summarise the technical development and result of each of those
elements. It is accompanied by a video containing an overview of the same. The
demonstration forum shown in the video can be accessed at demo.pavilion.tech. An
administrator account to that site can be provided on request.

DEIP Plugin
The development cycle of the DEIP plugin was mostly standard for Discourse plugins, with
the slight difference being the high number of custom gem use due to the OmniEvent
framework. The author is preparing a pull request to Discourse itself (discourse/discourse) to
improve the experience of developing a plugin with multiple gem dependencies.

Features and Documentation
The DEIP features are what you might expect from a plugin that integrates event providers
with a framework like Discourse. Event administration is accessible to administrators via the
Discourse administration panel and broken into the sections described below.

These descriptions should be read along with the first version of the documentation for the
DEIP which we’ve published for site administrators participating in the DEIP beta. That
documentation is focused on functional use. We will focus on the technical aspects and
overall narrative here. Note that the documentation is published on a Discourse plugin
directory which Pavilion developed and is currently trailing in partnership with other actors in
the Discourse ecosystem.

Providers
To get a basic understanding of “Providers”, and a list of currently supported providers,
please first read “Add a Provider” in the documentation. “Providers” is how an administrator
connects to different event providers and handles any authentication that may be required to
access their event data. Underpinning this concept is data collected in the “Providers” and
“Authentication” worksheet of the DEIP Research Data prepared in Phase 1.

2

https://github.com/paviliondev/discourse-events-integration
https://events.pavilion.tech/
https://meta.discourse.org/t/events-integration-plugin-beta/241170
https://meta.discourse.org/t/events-integration-plugin-beta/241170
https://rubygems.org/gems/omnievent
https://www.calconnect.org/events/calconnect-nottingham-spring-2022
https://www.calconnect.org/events/calconnect-nottingham-spring-2022
https://www.loom.com/share/1e27401781ac429889c59e8d1ab49ec7
https://demo.pavilion.tech/
https://github.com/discourse/discourse
https://discourse.pluginmanager.org/t/add-a-provider/539
https://discourse.pluginmanager.org/t/add-a-provider/539
https://discourse.pluginmanager.org
https://discourse.pluginmanager.org
https://discourse.pluginmanager.org/t/add-a-provider/539
https://docs.google.com/spreadsheets/d/1jqZTXhe_MLQi0BIA1A40OEhVI2YNOC9J0Tk7qRs1rVU/edit?usp=sharing


It’s worth mentioning that we decided to not handle authentication within the OmniEvent
framework to keep that as abstracted and focused as possible. There are various ways
provider connection and authentication can be handled, the “Providers” functionality in the
DEIP being one example (and it will be used as an example when explaining this aspect of
the standard - see further below).

Sources
A provider can have event data in multiple places, may have different types of events (e.g.
“event series”) and may change both of these over time. This is why we made the decision
to separate “Sources” of events from providers, a concept which roughly translates to the
“Request” worksheets of the DEIP Research Data. Please see “Add a Source” to understand
more about the functionality of Sources.

Events
Once you’ve got a provider and a source you can “import” events. The importation process
relies on OmniEvent to retrieve and format the events. It stores the retrieved events in a
separate database table to allow for flexibility of integration and administration. It also means
an admin can get a handle of what events they’ll be integrating into their community before
they appear to their users. Please see “Event Management” in the documentation for more.

Connections
A “Connection” is where events imported from a source actually get added into the
community and appear to users. Currently, Connections are based around Pavilion’s existing
experience with community event management, namely that events typically live in
dedicated categories, e.g. a category called “Events”. As such the connection an
administrator can make in the first version of the plugin is to “Sync” the events they imported
into a designated category. The admin can specify the salient aspects of how they might
want the event to appear, in particular the poster and the event “Client”.

With respect to the event “Client”, in the current version of the DEIP, the available clients are
the existing event-related plugins for Discourse: Pavilion’s own “Events Plugin” and
Discourse.org’s “Discourse Event” plugin. This means that the DEIP automatically works with
whichever client the site administrator is currently using to administer events in their
community.

Our plan is to assimilate Pavilion’s existing Events Plugin into the DEIP and brand the
combined plugin as the “Events Plugin” for Discourse. We haven’t yet taken the step of
assimilation as we felt that would have been an engineering step too far prior to testing the
DEIP functionality in our closed beta. The combined plugin will continue to support the
“Discourse Event” plugin as a client for maximum interoperability.

Logs
The DEIP has its own dedicated logging system in addition to the standard Discourse and
Rails logging systems. This dedicated system is necessary for two reasons

3

https://docs.google.com/spreadsheets/d/1jqZTXhe_MLQi0BIA1A40OEhVI2YNOC9J0Tk7qRs1rVU/edit?usp=sharing
https://discourse.pluginmanager.org/t/add-a-source/540
https://discourse.pluginmanager.org/t/automation-and-management/543#event-management-2
https://meta.discourse.org/t/events-plugin/69776
https://meta.discourse.org/t/discourse-event/149964


● It surfaces specific and descriptive provider integration, event import and connection
sync errors to the site administrator

● It integrates with OmniEvent’s logger, allowing for specific and descriptive
OmniEvent-level errors to surface to the site administrator.

When integrating multiple separate providers, there are quite a few potential sources of error
and we considered it important, both from a technical perspective and a UX perspective to
make the logging system descriptive and specific.

Tests, Linting and CI
The DEIP is covered in unit, integration and acceptance tests, following the best practices in
Discourse plugin development, specifically rspec for the backend (Ruby on Rails) and QUnit
for the frontend (Ember.js). The DEIP also follows the best practices in Discourse plugin
development code standards including:

● Strict use of Discourse server-side and client-side versioned APIs to ensure
long-term stability.

● Use of eslint, prettier and rubocop to format the code, using the same configurations
used in Discourse itself.

Also, the plugin utilises github workflows for continuous integration (CI). All tests, formatting
checks and version checks are run on:

- every pull request (feature development and major fixes)
- every direct commit to main (minor fixes); and
- on a cron schedule to ensure continued compatibility with Discourse itself.

The last CI flow is necessary because, unlike Wordpress, the default Discourse installation is
not versioned in a traditional sense. It uses the “test-passed” branch of the
“discourse/discourse” repository and site administrators get prompted to update their
installation as soon as they are behind the latest commit to that branch. This means there is
a higher-than-normal likelihood of incompatibility issues arising for a plugin in the Discourse
ecosystem. It is why high code standards, an appropriate test suite and CI is critical to the
viability of a production level plugin in the Discourse ecosystem.

OmniEvent
The development of OmniEvent (RubyGems) continued alongside the development of the
DEIP, with various improvements and functionality tweaks being made as OmniEvent was
put to use in the real use case provided by the DEIP. The OmniEvent gem and its various
provider-specific gems are all currently in “pre release” which is the standard for Ruby Gems
ready for beta (e.g. “omnievent” is currently 0.1.0.pre3), but not yet ready for production.

4

https://github.com/paviliondev/discourse-events-integration/tree/main/spec
https://github.com/paviliondev/discourse-events-integration/tree/main/test/javascripts/acceptance
https://github.com/paviliondev/discourse-events-integration/blob/main/.eslintrc
https://github.com/paviliondev/discourse-events-integration/blob/main/.prettierrc
https://github.com/paviliondev/discourse-events-integration/blob/main/.rubocop.yml
https://github.com/paviliondev/discourse-events-integration/tree/main/.github/workflows
https://github.com/paviliondev/omnievent
https://rubygems.org/gems/omnievent


Provider Gems
For context, it’s useful to recall that we are following the pattern of the “OmniAuth” gem
which provides a general authentication framework in the Omniauth gem itself, and then
allows providers to be integrated as needed via an ecosystem of provider strategy gems. In
our Phase 1 Research Report we anticipated the development of three provider gems for
OmniEvent in Phase 2 of DAPSI. We ended up developing five, and have a sixth in
development, each being driven by requirements of participants in the DEIP beta.

omnievent-icalendar (RubyGems)
This connects iCalendar endpoints to OmniEvent. It’s worth mentioning that it supports
iCalendar RRULE (recurring events), which the DEIP uses to support recurring calendar
events.

omnievent-api (RubyGems)
This is a generic OmniEvent strategy to connect an API-based provider to OmniEvent. It will
only be used as a dependency for provider-specific gems, abstracting common functionality
needed when interacting with an events API.

omnievent-eventbrite (RubyGems)
This connects OmniEvent to Eventbrite. This is perhaps the most straightforward of the
provider-specific gems, utilising the omnievent-api gem and adding eventbrite-specific
requests and formatting.

omnievent-eventzilla (RubyGems)
Similar to the Eventbrite gem, this is a straightforward connection of EventZilla into the
OmniEvent system.

omnievent-meetup (RubyGems)
This integration was slightly more complex due to the use of GraphQL in the Meetup.com
API and the relatively scant Meetup.com Documentation on the same.

Tests, Linting and CI
All of the OmniEvent gems follow best practices for tests, linting and CI for ruby gems. This
means:

- Using Rubocop for formatting
- Covering the gem in Rspec tests
- Using github workflows to run the linting and tests on every commit

5

https://github.com/omniauth/omniauth
https://github.com/omniauth/omniauth
https://github.com/omniauth/omniauth/wiki/List-of-Strategies
https://docs.google.com/document/d/1-oJsXivT_KRBZ-wUQ-TbHdO7Z-qf7z4GeiRiJ014V-E/edit?usp=sharing
https://github.com/paviliondev/omnievent-icalendar
https://rubygems.org/gems/omnievent-icalendar
https://github.com/paviliondev/omnievent-api
https://rubygems.org/gems/omnievent-api
https://github.com/paviliondev/omnievent-eventbrite
https://rubygems.org/gems/omnievent-eventbrite/
https://github.com/paviliondev/omnievent-eventzilla
https://rubygems.org/gems/omnievent-eventzilla/
https://github.com/paviliondev/omnievent-meetup
https://rubygems.org/gems/omnievent-meetup/

